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Empirical and analytical methods employed in the detection of topological chirality and 
achirality (amphicheirality) in oriented and non-oriented links are critically examined. U- 
polynomials of non-oriented links are modified for use in the detection of topological chirality. 
By use of this method, all but eight (listed below) non-oriented links with up to four components 
and nine crossings are proven to be topologically chiral, including 42, the abstract model of 
the only topologically chiral, non-oriented catenane (chemical link) synthesized so far. The 
topological chirality of certain 3-Borromean links is similarly proven. The amphicheirality of 
2~, 62, ~2 02 ~3 82 , 83, and 8~ is proven by the demonstration that all eight non-oriented links ~8,  " 6 1 ,  v2~ 
can attain rigidly achiral presentations. Furthermore, we conjecture that 9~1 and a two- 
component, oriented link with an 11-crossing diagram are the first members of, respectively, a 
class of non-oriented and a class of oriented amphicheiral, non-alternating, prime links with 
odd crossing numbers. Amphicheirality combined with an odd crossing number is unprece- 
dented among knots or links. 

1. I n t r o d u c t i o n  

When  Wasserman  reported the first synthesis of  a molecule with two interlocked 
rings (a [2]-catenane) in 1960, he provided " the first demonst ra ted  example of  a 
c o m p o u n d  in which the topology of  the system must  be considered in describing its 
s t ruc ture"  [1]. At  about  the same time, in a classic paper  with Frisch [2], Wasse rman  
in t roduced the concept  of  isomerism between knot ted  and unknot ted  and between 
inter locked (catenated) and non-interlocked rings, and thus launched the subject  
o f  "chemical  topology" .  Numerous  organic catenanes have since been prepared,  
thanks largely to the implementat ion of  ingenious synthetic strategies devised by  
Sauvage,  Schill, Stoddard,  V6gtle, and their coworkers.  Al though these synthetic 
products  are for the most  par t  [2]-catenanes, a number  of  higher catenanes,  such as 
[3]-catenanes [3], a [4]-catenane [4], and the [5]-catenane o lympiadane  [4], have 
also been prepared.  Seeman and coworkers  designed and carried out  the synthesis 
o f  complex interlocked structures made up of  single-stranded D N A ;  the mos t  spec- 
tacular  examples are polyhedra  (a [6]-catenane in the form of  a cube [5] and a [14]- 
catenane in the form of  a t runcated octahedron [6]) whose faces are made  up of  cyc- 
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lic DNA's  interlinked with their nearest neighbors. Also worth noting is the exis- 
tence of a molecular-based magnet with a catenated structure [7] and of polycate- 
nated interpenetrating organometallic networks [8]. 

Catenated molecules in Nature were first discovered in the mitochondrial 
D N A  of human cells by Vinograd and coworkers in 1967 [9]. A great variety of 
catenated DNA's  have since been observed in diverse biological systems [10]. A 
number of catenated structures have also been recently observed among proteins 
[11]. 

In this paper we discuss general methods for establishing the chirality and achir- 
ality of topological links. These methods are directly applicable to catenanes, which 
are chemical entities that can be abstractly represented by such links. To provide 
the necessary background, we begin our account with an informal description of 
some basic concepts and terminology; for the corresponding treatment of knots, 
see [12]. 

A topological link is a finite union of mutually disjoint knots. A knot is a simple 
closed polygonal (or smooth) curve embedded in 3-space. A knot is therefore a link 
with only one component. Knots and links are non-trivial, and therefore topologi- 
cally non-planar, if and only if they cannot be embedded in the plane without cross- 
ings. All the links referred to in this paper are non-trivial, but component knots 
often are not; such knots (or "unknots") may be thought of as empty triangles or as 
circles. 

A given link can be distorted by continuous deformation in 3-space (ambient iso- 
topy) into a variety of shapes (presentations) that form an equivalence class (iso- 
topy type). In ambient isotopy, links are treated as though they were infinitely 
deformable, the only constraint being that there must be no cutting-and-rejoining 
of curves. Topologically equivalent presentations of a given isotopy type are said 
to be isotopic. For convenience in analysis, presentations of links are projected in 
the plane as diagrams in which each crossing is a transverse double point marked in 
a suitable manner so as to represent an over- or an undercrossing. Throughout 
the remainder of this paper, non-oriented links (see below) are symbolized by K 
and refer to isotopy types, that is, to complete sets of topologically equivalent 
presentations. 

The number of crossings in a diagram may be reduced to a minimum by an ambi- 
ent isotopy. For a link K that number is the minimal crossing number, c(K). A dia- 
gram is said to be reduced if it contains no nugatory crossings. In particular, a 
diagram with a minimal crossing number is necessarily reduced. For example, 
c(K) = 2 in the reduced diagram (fig. 1 (a)) of 21, the simplest non-trivial link (the 
Hopf  link). This link is the abstract representation of the vast majority of reported 
chemical [2]-catenanes, one of which is depicted in fig. l(b) [13]. Link types such 
as 212 are characterized by their crossing numbers according to a convention in 
which c(K) is superscripted by the number of components in the link and sub- 
scripted by a numerical index, needed because two or more non-equivalent links 
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(a) Co) (c) 

Fig. 1. (a) Reduced diagram of the Hopflink, 2~. (b) A [2]-catenane [13] represented by 22. (c) Reduced 
diagram of the simplest non-alternating link, 7~. 

may  share the same crossing number  for links with c(K) > 5. For  knots  the super- 
script 1 is usually omit ted,  as for the trefoil knot ,  31. 

A link is alternating if overpasses al ternate with underpasses  all a long the curves 
in the reduced diagram; otherwise it is non-alternating. For  example,  212 is an alter- 
na t ing  l ink while 72 (fig. 1 (c)) is non-al ternat ing.  Al ternat ing knots  and links are 
listed first in kno t  and link tabulat ions such as Rolfsen 's  [14], fol lowed by non-al ter-  
nat ing knots  and links. 

Figure  2(a) is the reduced d iagram of  a th ree -component  link that  is representa-  
tive of  some [3]-catenanes. One of  these [3c] is depicted in fig. 2(b). A plane perpen-  
dicular  to the plane of  project ion (dashed line) and pierced in exactly two points  
cuts the link in half. I f  the open  ends on both  sides of  the plane are now jo ined  to 
fo rm closed curves, two H o p f  links result. The th ree-component  link is an example  
of  a composite or product  link, KI#K2, whose factors are prime links. Thus  the 

2 t h ree -componen t  link in fig. 2(a) is denoted  by 21 #2~, and  the f ive-component  link 

°\ 

X = C H z ( C H z O C H z ) z C H  2 y = C H z ( C H z O C H 2 ) 4 C H  2 

(a) (b) 

Fig. 2. (a) Reduced diagram of a composite link, 2 2 21#21 . The dashed line is a projection of the plane 
that divides the component Hopflinks. (b) A [3]-catenane [3c] represented by 2~#2~. 
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that represents olympiadane by 2 2 2 2 21#21#21#21. In contradistinction, 212 and 72 are 
prime links because they cannot be divided (factored) into smaller, non-trivial 
links. 

2. Chirality and orientation 

A knot or link is topologically achiral if and only if it can be mapped onto its mir- 
ror image by an ambient isotopy; otherwise it is topologically chiral. Topologically 
chiral knots or links exist as pairs of isotopy types or enantiomorphs, {K, K*}, all 
of whose presentations are pairwise mirror-image related. For example, if the dia- 
gram in fig. l(c) is associated with the topologically chiral link 72, then the full 
description of the pair ofenantiomorphs is {K(72), K(72) * }. 

If directions (denoted by arrows along the curves) are assigned to the component 
curves that constitute a link, that link is said to be oriented. Otherwise it is non- 
oriented. As will be discussed in further detail below, all but eight of the 130 non- 
oriented, prime links with up to four components and nine crossings in Rolfsen's 
tabulation [14] are topologically chiral (for example, 72), yet only one catenane has 
so far been synthesized [15] whose structure can be represented by a topologically 
chiral non-oriented link. That link is 42. Diagrams of the enantiomorphic pair 
{K(42), K(412) * } are depicted in figs. 3(a) and (b), along with their molecular reali- 
zations in figs. 3(c) and (d), respectively. In contrast, topologically achiral non- 
oriented links such as 22 and 22#212 have been amply realized in molecular form, as 
mentioned above. 

In general, any given diagram D of a non-oriented link K with rn indistinguish- 
able components yields upon orientation a set of 2 m oriented diagrams. If we 
assume that all of the oriented knot components are invertible [16], then this num- 
ber is cut in half because reversing the orientation of all the components that make 
up the link does not yield a new link. The resulting set of 2 m-1 diagrams, Dli (i = 1, 
2, 3 . . .  2m-1), is partitioned into subsets, each of which is associated with an 
oriented link K ~. We illustrate the above with three examples involving two- 
component links (m = 2), for which two oriented diagrams are expected. 

The diagram in fig. l(a) is a projection of the achiral link 212. Orientation yields 
the two oriented diagrams in figs. 4(a) and (b), i.e. D(212)--* {D~(212) D' f2 2~l ' 2 \  1]J' 
where --* symbolizes orientation. In this case, D~ (212) and/Y2(22) are diagrams of 
two topologically non-equivalent, chiral links that are related as enantiomorphs. 
That is, K(22) -* {K'(212), K'(212)*}. Molecular realizations [17] are depicted in 
figs. 4(c) and (d). Consider next the chiral link 412. The two diagrams in figs. 3(a) 
and (b) are projections of the enantiomorphs of 412, and, upon orientation, each of 
these yields a pair of diagrams: D(42) --~ {D~I (412), DI(412 ) } and D(412)* --* {D~I (412)*, 
D~ (412)*}. In this case, the members within each pair are associated with topologi- 
cally non-equivalent, chiral links that are not related as enantiomorphs: 
K(412) , 2 K£(412)) K(412)* , 2 .  --~ {K~(41), and --~ {K~(41) , K~(412)*}. Finally, orientation of 
the diagram in fig. 1 (c), which is the projection of one of the enantiomorphs of the 
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(a) (b) 

c...,.o<..._,,o ° 

(c) (d) 

Fig. 3. (a) Reduced diagram of the simplest topologically chiral, non-oriented link, 4 2. (b) The enantio- 
morph of (a). (c) A [2]-catenane [15] represented by (a). (d) The enantiometer of (c), represented 

by (b). 

chiral link 72, yields diagrams of two topologically equivalent, chiral links. That 
is, D(72) ---* {D~ (72) ~ D~(72) }, where ,-~ denotes topological equivalence. Hence 
K(72) ---* K'(72) and K(72) * ---* K'(72) * . The last example illustrates the fact that on 
occasion all 2 m-! diagrams obtained upon orientation of a non-oriented diagram 
are topologically equivalent and are thus associated with just one oriented link; 
that is, partitioning of the set of oriented diagrams may on occasion yield the trivial 
subset. 

Finally, note that an achiral [2]-catenane is modeled by 22 and therefore cannot 
attain topological chirality merely through introduction of conformationally chiral 
features [18] or through attachment of geometrically chiral but topologically pla- 
nar residues [19]: orientation of both of the cyclic components remains the conditio 
sine qua non for topological chirality. 

3. H o w  to tell whether a link is topologically chiral or achiral 

In the preceding sections we asserted that certain links are topologically chiral 
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(a) (b) 

" ~ O  _ O / "  
, 

(c) 

? 

(d) 

Fig. 4. (a) Reduced diagram D~I (22) of an oriented Hopflink K~ (2~) = K~(2~)*. (b) Reduced diagram 
Di(2~) of K~(2~) = K~ (2~)** (c) A [2]-catenane [17] represented by/Yx (22) • (d) The enantiometer of 

(c), represen ted by D~ (2~). 

while others are topologically achiral, but without offering any evidence in support  
of  these claims. In the following sections we describe general methods that  are 
available to establish topological chirality or achirality in links. 

All methods of this kind can be categorized as being either empirical or polyno- 
mial. Empirical methods were used with remarkable success in the 19th century, 
primarily by the foremost pioneer of knot  theory, the physicist Peter Guthrie Tait  
[20], to identify all 20 topologically achiral (or "amphicheiral",  as Tait called them, 
and as we shall refer to them in what follows) prime knots with up to 10 crossings. 
By definition, all that is required to prove a knot 's  amphicheirality is to demon- 
strate that a chiral presentation can be converted into its own mirror image by con- 
t inuous deformation. Such a demonstrat ion can be achieved by manipulat ing a 
piece of string in the form of a knot; no mathematical skill whatever is required, 
only patience, the ability to recognize mirror-image relationships, and some luck. 
The same method can be used to prove the amphicheirality of links, as described in 
section 4. Unfortunately,  however, the inability to convert a chiral presentation 
into its mirror image is inadmissible as evidence for the topological chirality of  a 
knot  or a link, since it can never be proven that all possible conversion paths have 
been explored. To prove topological chirality demands the use of the polynomial 
methods discussed in section 5. 
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4. Proofs of topological achirality by empirical methods 

As explained above, empirical methods are suitable for establishing the topologi- 
cal achirality, but not the chirality, of knots or links. We first show how these meth- 
ods work with the non-oriented links in Rolfsen's tabulation [14], and then 
proceed to a discussion of the corresponding oriented links. 

4.1. NON-ORIENTED AMPHICHEIRAL LINKS 

In a previous paper [21] we stated, without proof, that of the 126 non-oriented, 
prime links with up to three component knots and up to nine crossings listed in [14], 
six (22, 62, 882, 63, 83, 83) are amphicheiral. Among the four links with four compo- 
nents listed in [14], 84 is also amphicheiral. We recently discovered an eighth mem- 
ber in this class, 9621, whose odd crossing number renders it unique among all 
known amphicheiral knots and links and which will therefore be discussed in 
greater detail at the end of this article. As will be shown below, all other links in [14] 
are topologically chiral. 

Two methods, both empirical, are available to prove the amphicheirality of these 
links. The first method, interconversion by ambient isotopy of mirror-image 
related chiral presentations, is entirely general and applicable to all knots and links, 
whether oriented or not. As an example, the interconversion path in fig. 5 proves 
that 882 is amphicheiral. The second method, which is applicable only to certain 
invertible knots [22], depends on the attainment of a rigidly achiralpresentation, in 
which the symmetry of the presentation belongs to one of the achiral point groups. 
For example, 82 can attain a rigidly achiral presentation with $4 symmetry 
(fig. 5). In the case of prime knots, the only possible point groups [12] are Sz~, 
n = 1,2,. - -, but this constraint does not apply to links. This is illustrated in fig. 6, 
which depicts the Borromean link (63) and three of its rigidly achiral presentations 
with different symmetries [21]. Finally, fig. 7 displays rigidly achiral presentations 
for 22, 62, 9621, 843, 8 3, and 8 4. The amphicheirality of all eight links is thus firmly 
established. 

4.2. ORIENTED AMPHICHEIRAL LINKS 

Consider the oriented links derived from the eight amphicheiral non-oriented 
links described above. Upon orientation, diagrams of the two-component links 22 , 
62, 882, and 9~: yield in each case two diagrams that are associated with a pair of 
enantiomorphic links, as described above for 22. Orientation of 83 yields four dia- 
grams, two of which are associated with an enantiomorphic pair (figs. 8(a) and (b)) 
while the other two (figs. 8(c) and (d)) correspond to a pair of links whose amphi- 
cheirality can be proven by ambient isotopy to rigidly achiral presentations 
(figs. 8(e) and (f)). Of the four diagrams obtained upon orientation of 83, two are 
associated with a pair of enantiomorphic links (figs. 9(a) and (b)) while the other 
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Fig. 5. Top: Mirror-image-related chiral presentations of 8~ and a path for their interconversion by 
continuous deformation (ambient isotopy). Bottom: A presentation of 882 with $4 symmetry. The 

dashed line indicates the $4 axis. 

two (figs. 9(c) and (d)) are topologically equivalent and correspond to a single 
amphicheiral link, as proven by ambient isotopy of 9(c) to 9(d) and by ambient iso- 
topy of mirror-image related chiral presentations in 9(c). Of the eight diagrams 
obtained upon orientation of 834, two are associated with a pair of enantiomorphic 
links (figs. 10(a) and (b)), two (figs. 10(c) and (d)) are topologically equivalent and 
correspond to an amphicheiral link, and the remaining four (figs. 10(e)-(h)) are 
also topologically equivalent and correspond to a second amphicheiral link. The 
amphicheirality of 10(c) ,-~ 10(d) is easily deduced from the fact that 10(c) is rigidly 
achiral ($4 symmetry) and can be isotoped to 10(d). The topological equivalence 
of 10(e)-10(h) can be proven by ambient isotopy of 10(e) to 10(f)-10(h) and by 
ambient isotopy of mirror-image related chiral presentations in 10(e). Finally, all 
four diagrams obtained upon orientation of 63 (fig. 11) correspond to presentations 
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@ 
(a) (b) 

(c) (d) 

Fig. 6. The simplest Borromean link. (a) Reduced diagram of6~. (b) 86, (c) D2d, and (d) Th are rigidly 
achiral presentations. 

that are mutually interconvertible by ambient isotopy and are thus associated 
with a single oriented link. The amphicheirality of this link is also demonstrated 
with reference to the $6 presentation of the non-oriented link (fig. 6(b)): no matter 
in which direction the three components are oriented, the resulting presentation 
remains centrosymmetric and therefore achiral. 

Our results agree with those of Doll and Hoste [23], who tabulated all oriented, 
prime links with up to four components and nine crossings by use of skein polyno- 
mials (see section 5), and who found that the only amphicheiral links are 63, 
834 -~- nt--t- (fig" 8(c)), 83 + + -  (fig. 8(d)), 83, 84 + + + + (fig. 10(c)), and 
834 + + + -  (fig. 10(e)). Additional comments on this work are found in sec- 
tion 5.1. 

5. Po lynomia l  methods  

Over a century ago, Tait expressed the need "to find all the essentially different 
forms" of a knot or link [20a]. Only empirical methods, of the sort discussed above, 
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 7. Reduced diagrams of six amphicheiral links paired on the right with rigidly achiral presenta- 
tions. (a) 22 (D2d). (b) 62 ($4). (c) 9621 ($4); this presentation is equivalent to an array composed of the 

interlocked edges of two enantiomorphic M6bius strips. (d) 8 2 ($4). (e) 8~ (Cs). (f) 834 (D2h). 

were available during Tait 's lifetime, and it was not until the advent of  combinator-  
ial topology that a systematic, non-empirical  method was developed. The first 
example of  the new approach was a proof, by Dehn in 1914 [24], that the trefoil 
knot  exists in two topologically non-equivalent,  enant iomorphic  forms. The first 
knot  invariant, that  is, the first mathematical  object that could be unambiguously  
associated with individual knot  or link types independent of  any part icular  presen- 
tat ion or diagram, was a polynomial  discovered in 1928 by Alexander  [25]. The 
Alexander  polynomial  failed, however, to distinguish between enant iomorphs.  

This problem was not remedied until 1985, with Jones' publication of  the one- 
variable polynomial  V(t) [26]. Jones' discovery triggered a burst  of  activity that  led 
to more  powerful  two-variable polynomials,  foremost among them the H O M F L Y  
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(a) Co) 

(c) (d) 

(e) (f) 

Fig. 8. The four reduced diagrams of oriented links derived from 83. (a) and (b) The enantiomorphic 
pair. (c) and (d) Two topologically non-equivalent amphicheiral links. (e) and (f) Rigidly achiral pre- 

sentations that can be obtained by ambient isotopy from (c) and (d), respectively. 

po lynomia l  P(l, m) [27] and the K a u f f m a n  polynomia l  F(a, z) [28]. These three 
"skein  po lynomia l s"  are normal ly  capable of  detect ing topological  chirality in an 
or iented  kno t  or link. A l though  none  of  the three polynomials  is infallible in this 
respect,  as will be discussed below, F(a, z) suffers the fewest failures as a chirality 
detector  of  or iented knots  and links; fur thermore ,  where it fails, so do V(t) and  
P(l, m). In wha t  follows, we therefore  restrict ourselves exclusively to appl icat ions  
o f  the K a u f f m a n  polynomial .  

5.1. O R I E N T E D  LINKS 

Given an or iented link K', with D' an or iented d iagram of  K', the K a u f f m a n  poly- 
nomia l  of  K', which was proved  to be an isotopy invar iant  [28], is defined as 

FK,(a, z) = a-W(n') LD(a, z) , (1) 
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(a) (b) 

(c) (d) 

Fig. 9. The four reduced diagrams of oriented links derived from 863. (a) and (b) The enantiomorphic 
pair. (c) and (d) Two topologically equivalent presentations of the same amphicheiral link. 

where  w(D t) is the wri the  ofD' ,  D is the co r r e spond ing  non-or i en ted  d iagram,  and  
LD(a, z), is called the L -po lynomia l  o f  D. This  two-va r i ab le  L a u re n t  p o l y n o m i a l  
was  d i scovered  by  K a u f f m a n  [28]. The  L -po lynomia l  is mi r ror - image-sens i t ive  bu t  
d i a g r a m - d e p e n d e n t  [28c]; tha t  is, the L -po lynomia l  is no t  a topo log ica l  invar iant .  
W e  br ief ly  digress to explain the mean ing  o f " w r i t h e " .  

Each  cross ing in the or iented  d iagram o f  a kno t  or  link is a s soc ia ted  wi th  a char- 

(a) (b) (c) (d) 

(e) (0 (g) (h) 

Fig. 10. The eight reduced diagrams of oriented links derived from 834. (a) and (b) The enantiomorphic 
pair. (c) and (d) Two topologically equivalent presentations of the same amphicheiral link. (e)-(h) 

Four topologically equivalent presentations of the other amphicheiral link. 
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(a) (b) 

@_@ 
(c) (d) 

F ig .  11. Reduced diagrams of  the four topologically equivalent  presentations of  the amphicheiral ,  
oriented link derived from 6 3 . 

acteristic e that can assume a value of + 1 or -1 .  The writhe, w(D'), of an oriented 
knot  or link diagram is the arithmetic sum of the crossing characteristics, i.e., 
w(D') = £7e. For  example, by use of the convention in [12], w(D') = - 2  and +2, 
respectively, for the enant iomorphs D' 1 (22) (fig. 4 (a ) )and  D~(22) (fig. 4(b)). Simi- 
larly, the writhes of  the three oriented link diagrams derived from 212#22 (fig. 2(a)) 
are 0, +4, and - 4 ,  while those of the oriented link diagrams for 72 (fig. 1(c)) and 
the Whi tehead link 52 (fig. 12) are - 3 and - 1, respectively. 

All oriented links referred to in this paper are related to associated non-oriented 
links, and we therefore restrict ourselves exclusively to the oriented diagram set 
{D~, i = 1,2,- •., 2 m-I } that corresponds to a non-oriented link diagram D with rn 
indistinguishable components.  For  example, the Kauffman polynomials for the 
two oriented Hopf l inks  in figs. 4(a) and (b) are given by 

Fig. 12. The Whitehead link, 5 2 . 
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FKi(2~)(a,z ) = (a 3 + a)z + a 2 + (--a 3 -- a)z -1 , 

Fx~(2~)(a,z ) = (a -3 + a-1)z + a -2 + ( - a  -3 _ a-1)z -1 " 

The inequality rr,  22 (a, z) ¢ Fx,(2~)(a , z) means that K~(22) and K~(22) are dif- _ . --~(_:~) 
terent lsotopy types. 5lnce we see t~e mirror-image relationship between the links 
in figs. 4(a) and (b), we conclude that K~ (22) and K~ (22) are enantiomorphs. 

In general, the Kauffman polynomial has the following important property 
[28a]: 

FK,. (a, z) = rx,(a -1, z) ,  (2) 

where K'* is the mirror image of K', obtained by switching all the crossings in the 
D's o fK I. 

We call a Kauffman polynomial asymmetric in a if it satisfies the inequality in 
eq. (3a): 

Fx,(a, z) ¢ Fx,(a -1, z) .  (3a) 

Otherwise the polynomial is symmetric in a, or self-conjugate [27e]. From eqs. (2) 
and (3a) it follows that the oriented link K' and its mirror image K'* have different 
Kauffman polynomials (eq. (3b)): 

Fx,(a, z) # Fx,. (a, z). (3b) 

Thus, inequality (3a) is a topological chirality detector for any given oriented 
link K'. For instance, asymmetry in a in either Fx,~22~(a , z) or Fz,(22~(a , z) proves 

• " t ~ t 2 I~ 1! " ~ , ~  ~ t 2 that the oriented links K~ (2i) and K~ (21) that are associated with D 1 (}1) and D 2 (21) 
in figs. 4(a) and (b), respectively, are both topologically chiral, in harmony with 
the above conclusion. 

While asymmetry in a is proof of topological chirality, symmetry in a does not, 
in general, serve as a proof of amphicheirality. That topological achirality of an 
oriented link or knot is a sufficient but not a necessary condition for symmetry in a 
is exemplified by the classic knots 942 and 1071 [29] and by the 12-crossing knots 
12126, 12132, 12214, 12222, and 12697 [29b]: although the oriented and non-oriented 
knots are chiral [27e,29,30], the Kauffman polynomials are symmetric in a. We call 
this phenomenon the "942 syndrome". The same difficulty is encountered in links• 
Consider, for example, Fx,(a,z) for the oriented, composite link 942#63 
(fig. 13(a)): 

FK,(942#6~) (a, z) = Fx,(9,2)(a, z)- FK,(6])(a, z). 

Because the knot 942 is one of the link's components, it follows by the uniqueness 
of prime decompositions that the composite link 942#63 , as well as 942#22 (see 
below), is topologically chiral, no matter whether it is oriented or not. In general, 
because the 942 syndrome cannot, in general, be rigorously excluded, symmetry in a 
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(a) (b) (c) 

Fig. 13. Selected composite links. (a) K' (942#63). (b) K(942#6~). (c) K(942#2~). 

does not necessarily imply topological achirality for oriented links (or knots). For 
example, we noted in section 4.2 that Doll and Hoste had identified all six amphi- 
cheiral, oriented, prime links with up to four components and nine crossings. Their 
method of identification was, in effect, the observation of symmetry in a for the 
six corresponding Kauffman polynomials, and they claimed that "within Ihe range 
of this table, the Kauffman polynomial F(a, x) detects all such cases [of amphi- 
cheirality]". In light of the ever-present possibility ofmisidentifying a chiral link as 
amphicheiral, due to the 942 syndrome, their conclusion must in principle be 
regarded as fortuitously correct. 

5.2. NON-ORIENTED LINKS 

Several polynomials have been described for non-oriented links (or knots). A 
one-variable Laurent polynomial Qx(z), also called "absolute polynomial" [27b], 
was discovered by Brandt, Lickorish, and Millett in 1986 [31]. Unfortunately, the 
absolute polynomial is not mirror-image-sensitive because it "suffers from the 
same weakness with respect to the detection ofchirality as does the Alexander poly- 
nomial" [27b]. In fact, QK(z) is a special case of the Kauffman polynomial 
Fx, (a, z) [27e]; that is, QK (z) = Fx, (1, z). Recall the L-polynomial introduced ear- 
lier. The normalized version of LD, called polynomial UK of non-oriented links or 
knots, was defined by Kauffman [28a]: 

Ux(a, z) = a-S(~)Lm(a, z), (4) 

where s(D'), the "self-writhe", is the sum of the characteristics of self-crossings in 
components of/9'. For example, s(D') of 512 in fig. 12 is -1 .  The polynomial UK, 
hereafter referred to as the U-polynomial, is a topological invariant for non- 
oriented links [28a]. 

5.2.1. Detection of topological chirality 
By combining eq. (1) and eq. (4), we have 

UK(a, z) = a21(~)Fic(a, z) (5) 
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in which I(D') = [w(D') - s(D')]/2 = l(K'), the linking number of the diagram D' 
and hence the linking number of the corresponding link Kq The linking number, an 
invariant of K' [32a], is one half the sum of the characteristics of the inter-compo- 
nent crossings. For example, c(K) = 2 and l(K') = ±1 for 22, while c(K) = 5 and 
l(K') = 0 for 512. Because Fx,(a, z) and l(K') are both invariants, it follows that 
Ux(a, z) is also an invariant of K. 

THEOREM 
A non-oriented link K is topologically chiral if its U-polynomial Ux(a, z) is 

asymmetric in a, that is, 

UK(a, z) # UK(a -1 , z) .  (6) 

Proof  
Consider a non-oriented link K and its mirror image K*, and a corresponding 

oriented link K' and its mirror image K'*. By combining eqs. (2) and (5), and 
because l(K') = - l (K'*) ,  it follows that 

UK. (a, z) = a 21(K')+21(x'') UK(a -1 , z) = UK(a -1 , z) . 

Because Ux. (a, z) ¢ Ux(a, z), it follows that K is a different isotopy type than its 
mirror image K*. Therefore, by definition, K is topologically chiral. This completes 
the proof. [] 

Hence, just as Fx, (a, z) is a chirality detector for an oriented link K', UK(a, z) is 
a chirality detector for a non-oriented link K. For example, consider the non- 
oriented link 42 in fig. 3(b). 

UK(4~)(a,z ) • UK(4~)(a-l,z) = (a + a-l)z 3 -Jr-(a2+ 1)z 2 

+ (a 3 - 2 a -  3a -1 )z -  1 + (a+ a-X)z -1 . 

The polynomial is asymmetric in a, proof that the non-oriented link 412 is topologi- 
cally chiral. In this manner we were able to prove that all the links listed in Rolfsen's 
book [14], with the exception of eight links {22, 62, 82, 921, 63, 83, 863, 84} whose 
U-polynomials are symmetric in a, are topologically chiral. The amphicheirality of 
these eight links could not be ascertained with absolute certainty by this method 
because the U-polynomial, like the Fx,(a, z), may suffer from the 942 syndrome. 
That is, if the U-polynomial is symmetric in a, we cannot conclude, in general, that 
the corresponding non-oriented link is amphicheiral. For example, the U- 

3 942#212 (figs. 13(b) and polynomials of the non-oriented composite links 942#62 and 
(c)) are 

UK(9,z#6~ ) (a, z) = UK(942)(a, z).  Ux(6~ ) (a, z) 

and 
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UK(9,2#2~ ) (a, z) = UK(942)(a, z)- UK(2~ ) (a, z) .  

Both  polynomials  are symmetr ic  in a, yet the corresponding links are bo th  topolo-  
gically chiral (see above). Fo r  this reason the empirical approach  had  to be 
employed  to prove the amphicheiral i ty  of  the eight links, as described in sec- 
t ion 4.1. 

5.2.2. Topological chirality o f  3-Borromean links 
An n-Boromean  link is a nontrivial  l ink in which n rings, n/> 3, are combined  in 

such a way that  any two componen t  rings fo rm a trivial link [21]. We previously 
showed that  amphicheira l i ty  in such links can be established empirically,  by 
demons t ra t ing  the existence of  rigidly achiral presentat ions [21]. Topological  chir- 
ality, however ,  could only be conjectured for certain links and with an odd number  
of  crossings, such as the two depicted in figs. 14(a) and  (c) which cor respond to 
figs. 5(d) and (e) in [21], respectively. By employing the procedure  described in the 
preceding section, it is now possible to prove this conjecture. 

Figure  14 depicts the first three members  in two series of  3 -Borromean  links, 
13 + m (m >/0) and 15 + m (m/> 0). The U-polynomials  are all asymmetr ic  in a. For  
example,  the U-polynomial  of  the link in fig. 14(a) (U~g.14a) contains  four teen sum- 
mands ,  the first eleven of  which are asymmetr ic  in a ~o(a, z) - f l o (a ,  z), taking the 
first terms as f0 (a, z)): 

(a) (b) (c) 

(d) (e) (f) 

Fig. 14. Reduced diagrams of two series of 3-Borromean links. Members of the 13 + m (m/> 0) series 
are shown with (a) 13, (b) 14, and (c) 15 crossings. Members of the 15 + m (rn >~0) series are shown 

with (d) 15, (e) 16, and (f) 17 crossings. 
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Ufig.14a(a,z) = ( 9  + 9a-2)z 12 + (27a + 54a -1 + 27a-S)z 11 

+ (36a 2 + 58 + 55a -2 + 33a-a)z 1° 

+ (30a 3 - 1 l a  - 87a -1 - 25a -3 + 21a-S)z 9 

+ (17a 4 - 53a 2 - 169 - 172a -2 - 66a -4 + 7a-6)z 8 

+ (6a 5 - 44a 3 - 57a - 14a -1 - 45a -3 - 37a -5 + a-7)z  7 

+ (a 6 -- 20a 4 + 20a 2 + 128 + 125a -2 + 31a -4 -- 7a-6)z 6 

+ (--4a 5 + 20a 3 + 57a + 63a -1 + 43a -3 + 13a-5)z 5 

+ (6a 4 + 3a 2 -- 15 -- l l a  -2 + a-4)z  4 

+ (--2a 3 -- 12a -- 16a -1 -- 4a -3 + 2a-S)z 3 

+ ( - 4 a  2 - 12 - 12a -2 - 4a-4)z 2 + 1 + ( - 2 a  - 2a-1)z -1 

+ (a 2 + 2 + a -2 )z  -2 . 

Since a s y m m e t r y  in a o f  a single s u m m a n d  suffices as p r o o f  o f  topologica l  chiral-  
ity, we can state m o r e  simply: 

Ufig.14a(a,z): fo (a , z )  = (9 + 9a-2)z 12 . 

Similarly,  

Ufig.lab(a, Z): fo(a, Z) = 

Ufig.14c(a, Z): J~(a, z) = 

Ufig.14d(a , Z): J~(a, z) = 

Ufig.14e(a, z): fo(a, z) = 

(9a -I + 9a-3)z 13 , 

(9a -2 + 9a-4)z 14 , 

(10 + 10a2)z 14, 

(10a + 10a3)z 15 , 

Ufig.14f(a, Z): fo(a, z) = (10a 2 + 10a4)z 16 . 

Thus  all six 3 -Bor romean  links in fig. 14 are topologica l ly  chiral.  
N o t e  tha t  all the members  o f  our  series have reduced,  a l t e rna t ing  d iag rams  and  

hence  [34a,35] have  min ima l  crossing numbers .  

6. Amphicheiral  links with odd crossing numbers 

As descr ibed in section 4.1, the non-or ien ted  t w o - c o m p o n e n t  l ink 921 can  a t t a in  
a r igidly achiral  p resen ta t ion  (fig. 7(c)) and  is therefore  amphiche i ra l .  N o  o ther  
example  is k n o w n  so far  o f  an  amphiche i ra l  link, whe ther  or ien ted  or  not ,  whose  
c(K)  is odd.  F u r t h e r m o r e ,  because no  example  is k n o w n  of  an  amphiche i ra l  k n o t  
wi th  an  odd  c(K),  9~ is sui generis a m o n g  all k n o w n  kno t s  and  links. 
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In this section we conjecture that 921 is the first member  in a class K of amphi- 
cheiral, non-oriented,  non-alternating, two-component ,  prime links with c(K) 
= 9 + 2n, n = 0, 1, 2, 3,.  • -, that K is the union of two subclasses, Keven and Koda, 
characterized by the parity of  n, and that the corresponding subclasses of oriented 
links, K/even and K'oa d, exhibit markedly different properties with respect to amphi- 
cheirality and writhe. 

The members  of Keven, whose diagrams have 9 + 4m crossings, m = 0, 1, 2, 3, 
• -., may  be constructed, as illustrated for the 13-crossing link diagram in fig. 15(a), 
by insertion of  a pair of mirror-image-related double-helical tangles [33] with an 
even number  of crossings into the two loops of the reduced diagram of 921 that are 
marked  by arrows in fig. 15(b). The corresponding rigidly achiral presentations 
are exemplified by the $4 presentation of the 13-crossing link diagram in fig. 15(c). 
Similarly, the members  of Koaa, whose diagrams have 11 + 4m crossings, m = 0, 
1, 2, 3 , . . . ,  may  be constructed by insertion into 921 of a pair of mirror- image- 
related double-helical tangles with an odd number of crossings, as illustrated 
for the 11-crossing link diagram in fig. 16(a). The corresponding rigidly achiral 
presentations are exemplified by the $4 presentation of the 11-crossing link diagram 
in fig. 16(b). Every member  in class K can be similarly deformed to an $4 
presentation.  

Figure 17 depicts four oriented diagrams, derived from the enant iomorphs of  
921, that  illustrate membership in K/~ven. The Kauffman polynomial  for K/1(921), 
associated with D~I (921) in fig. 17, had previously been calculated by Doll  and Hoste 
[23], who found that FK, c92 ~(a, z) ¢ Fr,~92 ~ (a -1 , z). F rom this it is easily shown 

t 2 ! 2 , I~ 61~ t 2 1~ ~lJ 2 * 
that D 1 (961) ~ D2(961 ) and Da(961 ) ~ D 1 (961) , and that F(a, z) ¢ F(a -1, z) for 
each of  the four diagrams in fig. 17. The same kind of inequalities obtains for the 
H O M F L Y  and Jones polynomials.  The two links associated with the four diagrams 
in fig. 17 are therefore topological enantiomorphs.  

F r o m  the example of the links ' 2 ~ 2 K 1 ( 9 6 1 )  and K 1 ( 9 6 1 ) * ,  which are associated with 
2 t D 1 (961) and D~l (921) * in fig. 17, we conjecture that each member  of  K~ven exists as 

(a) (b) (c) 

Fig. 15. Reduced diagrams of selected links belonging to Korea. (a) A 13-crossing link diagram. (b) 
9~1. (c) A rigidly achiral presentation of (a). The center of the projection is a transverse quadruple 

point, with segment 1 closest to the observer, and segments V, 2, and 2' further away, in that order. 
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(a) (b) 

Fig. l 6. (a) An 11 -crossing link diagram belonging to Kod d. (b) A rigidly achiral presentation of(a). 

an enant iomorphic  pair of oriented links. Note  that the $4 symmetry of the diagram 
in fig. 1 5(c) is destroyed upon orientation of the link. In contrast, each member  of 
K'od d is amphicheiral  because the S4 symmetries of our diagrams for Kodd are pre- 
served upon orientation of both components of the links in this class. For example, 
whereas orientation of the $4 presentation of 9621 (fig. 7(c)) yields two enantio- 
morphic  links that are ambient isotopic with K 1(9621) and ' 2 * t K 1 (961) , orientat ion of  
the $4 presentation of the 1 1-crossing link in fig. 1 6(b) yields two ambient  isotopic 
links with $4 symmetry (fig. 1 8). 

Also noteworthy is the observation that two minimal crossing diagrams with dif- 
ferent writhes, w ( D ' )  = :[:9 and ±7, are associated with 921; thus, with reference to 
fig. 17, w(D') + 9 , _ 7 , _ 9 ,  and +7 for D~l(921) ' , 2 D, ro2~* = D2(961), D'1(921) *, and 2\"61] ' 

respectively. This is similar to the Perko pair [32b], in which two minimal crossing 
diagrams with w(D')'s o f + 1 0  (or - 10) and +8 (or - 8 )  are associated with the same 

D,.(9~ ) D;(9J, ) 

Fig. 17. Four reduced diagrams obtained by orientation ofD(9~l ) and D(9~1 )*. 
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J 
Fig. 18. Two diagrams with $4 symmetry (top left and right), obtained by orientation of the $4 presen- 

tation in fig. 16(b), and their interconversion by ambient isotopy. 

topologically chiral, non-alternating, 10-crossing prime knot. Figure 19 depicts 
the Perko pair P1 (left), with w(D')= +10, and P2 (center), with w(D') = +8. 
In that sense,  D/1(9621) , 2 , , 2 D2(961 ) or D2(961 ) ~ D'1(9621) * parallels P1 ~ P2 or 

Minimal crossing diagrams with different writhes, w(D') = +1 and -1 ,  are also 
conjectured to be associated with each member of K'od d. For example, fig. 20 

P1 P2 PI # P2* 

Fig. 19. The Perko pair: (a) Pl, with w(D') = +10, and (b) P2, with w(D') = +8. (c) The composite 
knot P1 #P~, with w(/Y) = +2. 
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Fig. 20. Two reduced 11-crossing diagrams of the same amphicheiral, oriented link, both with 
w(O') = +1. 

depicts two 11-crossing link diagrams of the same amphicheiral, oriented link, 
both with w(D')  = + 1, while the mirror-image diagrams have w ( D  t) = - 1. 

Tait's conjecture, that any knot whose minimal crossing number is odd must be 
topologically chiral, has been proven for alternating knots [28a,34]. The suspicion 
that Tait's conjecture may not hold for some types of non-alternating knots is 
fueled by the existence of non-oriented (K) and oriented (K~dd) non-alternating 
links that are conjectured to have odd minimal crossing numbers yet are topologi- 
cally achiral. 
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